Image
Structural Equation Modeling: A Second Course (2nd ed.) Paperback

Image
Structural Equation Modeling: A Second Course (2nd ed.) Paperback

Title
Structural Equation Modeling: A Second Course (2nd ed.) Paperback

Author
Gregory R. Hancock,
Ralph O. Mueller

$
39.09
Price
$45.99
15
% off
% off
All sales are final
Paperback
$45.99
Hardcover
$85.99
Ebook
$65

Variations
USD
Upload requirements

Overview

 

Sponsored by the American Educational Research Association's Special Interest Group for Educational Statisticians

This volume is the second edition of Hancock and Mueller’s highly-successful 2006 volume, with all of the original chapters updated as well as four new chapters. The second edition, like the first, is intended to serve as a didactically-oriented resource for graduate students and research professionals, covering a broad range of advanced topics often not discussed in introductory courses on structural equation modeling (SEM).... Such topics are important in furthering the understanding of foundations and assumptions underlying SEM as well as in exploring SEM, as a potential tool to address new types of research questions that might not have arisen during a first course. Chapters focus on the clear explanation and application of topics, rather than on analytical derivations, and contain materials from popular SEM software.

CONTENTS
Introduction to Series, Ronald C. Serlin. Preface, Richard G. Lomax. Dedication. Acknowledgements. Introduction, Gregory R. Hancock & Ralph O. Mueller. Part I: Foundations. The Problem of Equivalent Structural Models, Scott L. Hershberger & George A. Marcoulides. Reverse Arrow Dynamics: Feedback Loops and Formative Measurement, Rex B. Kline. Partial Least Squares Path Modeling, Edward E. Rigdon. Power Analysis in Structural Equation Modeling, Gregory R. Hancock & Brian F. French. Part II: Extensions. Evaluating Between-Group Differences in Latent Variable Means, Marilyn S. Thompson & Samuel B. Green. Conditional Process Modeling: Using Structural Equation Modeling to Examine Contingent Causal Processes, Andrew F. Hayes & Kristopher J. Preacher. Structural Equation Models of Latent Interaction and Quadratic Effects, Herbert W. Marsh, Zhonglin Wen, Kit-Tai Hau, & Benjamin Nagengast. Using Latent Growth Modeling to Evaluate Longitudinal Change, Gregory R. Hancock, Jeffrey R. Harring, & Frank R. Lawrence. Mean and Covariance Structure Mixture Models, Dena A. Pastor & Phill Gagné. Exploratory Structural Equation Modeling, Alexandre J. S. Morin, Herbert W. Marsh, & Benjamin Nagengast. Part III: Assumptions. Nonnormal and Categorical Data in Structural Equation Modeling, Sara J. Finney & Christine DiStefano. Analyzing Structural Equation Models with Missing Data, Craig K. Enders. Multilevel Structural Equation Modeling with Complex Sample Data, Laura M. Stapleton. Bayesian Structural Equation Modeling, Roy Levy & Jaehwa Choi. Use of Monte Carlo Studies in Structural Equation Modeling Research, Deborah L. Bandalos & Walter Leite. About the Authors.

 

Product Details

 

ISBN-13: 9781623962449
Publisher: Information Age Publishing
Publication date: 3/2013
Pages: 702
Image
Structural Equation Modeling: A Second Course (2nd ed.) Paperback
Price
$45.99
Language
English
Author
Gregory R. Hancock,
Ralph O. Mueller
ISBN-13
9781623962449
Publisher
Information Age Publishing
Publish Time
Shipping
Flat rate
Offer
10% Discount
Stock level

10

Paperback
Is Paperback available?
Yes
Paperback
$45.99
Is Hardcover available?
Yes
Hardcover
$85.99
Is Ebook available?
Yes
Ebook
$65
Category
Education

Paperback
Is Paperback available?
Yes
Is Hardcover available?
Yes
Is Ebook available?
Yes

Overview

 

Sponsored by the American Educational Research Association's Special Interest Group for Educational Statisticians

This volume is the second edition of Hancock and Mueller’s highly-successful 2006 volume, with all of the original chapters updated as well as four new chapters. The second edition, like the first, is intended to serve as a didactically-oriented resource for graduate students and research professionals, covering a broad range of advanced topics often not discussed in introductory courses on structural equation modeling (SEM).... Such topics are important in furthering the understanding of foundations and assumptions underlying SEM as well as in exploring SEM, as a potential tool to address new types of research questions that might not have arisen during a first course. Chapters focus on the clear explanation and application of topics, rather than on analytical derivations, and contain materials from popular SEM software.

CONTENTS
Introduction to Series, Ronald C. Serlin. Preface, Richard G. Lomax. Dedication. Acknowledgements. Introduction, Gregory R. Hancock & Ralph O. Mueller. Part I: Foundations. The Problem of Equivalent Structural Models, Scott L. Hershberger & George A. Marcoulides. Reverse Arrow Dynamics: Feedback Loops and Formative Measurement, Rex B. Kline. Partial Least Squares Path Modeling, Edward E. Rigdon. Power Analysis in Structural Equation Modeling, Gregory R. Hancock & Brian F. French. Part II: Extensions. Evaluating Between-Group Differences in Latent Variable Means, Marilyn S. Thompson & Samuel B. Green. Conditional Process Modeling: Using Structural Equation Modeling to Examine Contingent Causal Processes, Andrew F. Hayes & Kristopher J. Preacher. Structural Equation Models of Latent Interaction and Quadratic Effects, Herbert W. Marsh, Zhonglin Wen, Kit-Tai Hau, & Benjamin Nagengast. Using Latent Growth Modeling to Evaluate Longitudinal Change, Gregory R. Hancock, Jeffrey R. Harring, & Frank R. Lawrence. Mean and Covariance Structure Mixture Models, Dena A. Pastor & Phill Gagné. Exploratory Structural Equation Modeling, Alexandre J. S. Morin, Herbert W. Marsh, & Benjamin Nagengast. Part III: Assumptions. Nonnormal and Categorical Data in Structural Equation Modeling, Sara J. Finney & Christine DiStefano. Analyzing Structural Equation Models with Missing Data, Craig K. Enders. Multilevel Structural Equation Modeling with Complex Sample Data, Laura M. Stapleton. Bayesian Structural Equation Modeling, Roy Levy & Jaehwa Choi. Use of Monte Carlo Studies in Structural Equation Modeling Research, Deborah L. Bandalos & Walter Leite. About the Authors.

 

Product Details

 

ISBN-13: 9781623962449
Publisher: Information Age Publishing
Publication date: 3/2013
Pages: 702